
 Optimized  hydrometeor
Profiles

EOF+1dVAR TBs

EA1

EA2

EA3

Improvement of Simulated Cloud-Radiation Database for PMW Rain Retrieval in East Asia: EOF+1dVAR Optimization

BACKGROUND & NECESSASITY

 The Korean Peninsula (EA1) and its surroundings 
have unique geographical and geophysical 
environments such as peninsula, surrounding oceans, 
strong baroclinicity, mid-latitude and monsoon.

 Those characteristics are clearly 
reflected in TB(85GHz) – rain rate 
relations (Seo 2009; Ryu et al. 2012). 

 The region shows a large discrepancy 
between TMI and PR rain (Seo et al. 
2015).   

REPRESENTATIVENESS of SIMULATED DBs 

HOW TO OPTIMIZE SIMULATED DBs 

SETUP of  EOF+1dVAR OPTIMIZATION with EOFs

 Setup of the hybrid 1D-VAR combined with the major (about 12-
16) EOFs

 Two stepwise  approaches with the two different FOV scales 
and scale factor adjustment 
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maintaining the vertical structure of hydros obtained from PR obs. 
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 The error covariances for radar reflectivity and TBs with 16 EOFs
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 The PMW rain 
retrieval is very 
challenging in this 
region. 

 For Bayesian 
rainfall retrieval 
algorithms, the 
representativeness 
of a priori DB to 
natural 
phenomena in the 
atmosphere 
becomes a critical 
issue.

 Five representative cases of summer rainfall in the vicinity of the 
Korean Peninsula are simulated using the WRF model.

 Simulated TB manifolds in the observational TMI TB EOF space
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 The five simulated cases show serious lack of representing clouds 
occurring in NATURE.

 Therefore, (1) we need to remove some unrealistic cloud profiles in 
the DB, (2) repair the cloud profiles which are not consistent to TMI 
and PR observations, and (3) add missing clouds in the DB. 

 In order to repair the simulated clouds, we need to utilize cloud 
observations such as TMI and PR measurement.

 To do so, we need to deal with the variables in 5*nz (five hydrometeor 
species x the number of vertical levels)  dimension.  This is a huge dimension, 
resulting in very heavy computation.  

 To mitigate the high dimension, we use coefficients (amplitudes) of 
concurrent hydro EOFs since the coefficients retain five hydrometeor structures.

 By efficiently alleviating the mathematically ill-posed problem, we did not 
have to make a strong assumption to remove a certain hydrometeor species or 
to use simple relations among hydrometeor species.
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EOF+1dVAR OPTIMIZED CLOUDs with FIXED N0r

 Hydrometeor (cloud liquid water, rain, cloud ice, snow & graupel) content 
profiles are optimized by solving the hybrid EOF+1D-VAR cost functions. 

 Optimized  
hydrometeor

Profiles
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 TB and rain relations for the EOF+1dVAR optimized DBs 
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 with fixed N0r
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 with variable N0r
increasing rain rate 
for a given TBs !!!

GMI-TB(conv)        GMI-TB(strat) 

N0r_org=8.*106  ;  rain

iN0r=0            ; PR pixels

if(raintype eq 'convective') then begin ; convective

if(rec(i).pr_sfcrain ge 0 and rec(i).pr_sfcrain lt 5) then ym_N0r_pixel_best(iN0r)=N0r_org*7.5

if(rec(i).pr_sfcrain ge 5 and rec(i).pr_sfcrain lt 10) then ym_N0r_pixel_best(iN0r)=N0r_org*10.5

if(rec(i).pr_sfcrain ge 10 and rec(i).pr_sfcrain lt 15) then ym_N0r_pixel_best(iN0r)=N0r_org*13.5

if(rec(i).pr_sfcrain ge 15 and rec(i).pr_sfcrain lt 20) then ym_N0r_pixel_best(iN0r)=N0r_org*16.5

if(rec(i).pr_sfcrain ge 20 and rec(i).pr_sfcrain lt 30) then ym_N0r_pixel_best(iN0r)=N0r_org*19.5

if(rec(i).pr_sfcrain ge 30 and rec(i).pr_sfcrain lt 40) then ym_N0r_pixel_best(iN0r)=N0r_org*22.5

if(rec(i).pr_sfcrain ge 40 and rec(i).pr_sfcrain lt 50) then ym_N0r_pixel_best(iN0r)=N0r_org*25.5

if(rec(i).pr_sfcrain ge 50)                             then ym_N0r_pixel_best(iN0r)=N0r_org*28.5

endif else begin  ; other than convective rain type

ym_N0r_pixel_best(iN0r)=N0r_org 

endelse

EOF+1dVAR OPTIMIZED CLOUDs with VARIABLE N0r

 The N0r adjustments consisted preponderantly in 
increases relative to the initial values, which is more 
likely to be consistent with the microphysics of 
convective clouds, in particular, of summer stationary 
fronts occurring near the Korean Peninsula.  This region 
exhibits strong rain rate more frequently than any other 
regions for comparable radar observations (e.g., Seo 
2011; Ryu et al. 2012; Sohn et al. 2013).
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good agreement between the 
optimized DB and observations
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 To fix the underestimation of rain in the EOF+1dVAR optimization,  
we employed variable N0r as a function of rain rate in the 
optimization.  
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